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Abstract

In an ab initio approach to density functional theory one needs to know the electronic pair-density averaged over the coupling

strength of the pair-interaction. As this pair-function is not available without having solved the associated N-electron problem, one

has to resort to universal properties of the pair-density that are independent of specific features of the ground-state wavefunction. By

exploiting these universal properties and so-called sum rules for the pair-correlation factors we derive very simple approximate spin-

dependent expressions for the exchange-correlation energy per particle and for the associated potential in the Kohn–Sham

equations. There is some similarity of the resulting density functionals with those obtained from the widely applied local spin density

approximation (LSDA) based on electron gas theory. As the application of the latter to exceedingly inhomogeneous gases in realistic

systems is very debatable, the manifest similarity seems to suggest that LSDA can consistently be justified only via the above pair-

density analysis, but the justification of certain electron gas refinements may remain questionable. We shortly review similar

attempts made by other authors and particularly focus on the issue of self-interaction and the ‘‘overbinding problem’’. We

demonstrate for the 3d- and 4d-metals that our approximation yields density of states (DOS), magnetic moments and Stoner

parameters that are practically identical with respective data obtained from up-to-date LSDA- or gradient corrected (GGA-)

potentials. There is also an excellent agreement of the DOS for the insulators (semi-conductors) C, Si, Ge, and GaAs. We show that

our approach yields cohesive energies for these materials that are very close to the GGA-values indicating a distinct improvement

over the standard LSDA-values. The calculations have been performed with the aid of the WIEN 97 computer code based on the

Full Potential Linear Augmented Plane Wave (FLAPW-) method.

r 2003 Published by Elsevier Inc.
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1. Introduction

Density Functional Theory (DFT) owes its exceed-
ingly simple formal structure and its surprising success
in treating realistic N-electron systems to a mathema-
tical trick known from nuclear theory (see also [1–3]):
one writes down the non-relativistic Hamiltonian for the
respective system of N interacting electrons yielding
spin-densities rsðrÞ ðs ¼ 71Þ and places a reduction
factor l in front of the electron–electron interaction
term. One then gradually reduces this factor from its
original value l ¼ 1 to 0 and adds a spin-dependent
ing author.
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extra potential V̂extðl; r; sÞ to the primarily occurring
external potential VextðrÞ in which the interacting
electrons move. These extra potentials have to be chosen
such that the original spin-densities rsðrÞ are conserved
at any l: At l ¼ 0 the system consists of N non-
interacting electrons and hence the associated Schrö-
dinger equation can be decomposed into N one-particle
equations. The latter constitute the so-called Kohn–
Sham (KS-) equations which contain a spin-dependent,
multiplicative, orbital- and energy-independent poten-
tial. Because of this orbital- and energy-independence
the KS-equations are readily accessible to numerical
integration as opposed to the Hartree–Fock-equations
where the respective potential is non-local. The extra
potential V̂extðr; sÞ for l ¼ 0 turns out to consist of the
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Hartree potential VHðrÞ which represents a Poisson
integral containing the total charge density rðrÞ ¼P

s rsðrÞ; and the so-called exchange-correlation poten-
tial Vxcðr;sÞ which depends on the spin-densities of
either spin-orientation. A very general property of
V̂extðl; r; sÞ is quite obvious from the way it is
introduced as a potential that acts equally and
simultaneously on each electron for any value of l: it
cannot possibly depend on individual orbitals! At best, it
can depend on the sum of the square moduli of N

occupied orbitals (for l ¼ 0).
The determination of V̂extðl; r; sÞ presents a key

problem in DFT and is conventionally achieved by
subdividing the system into sufficiently small cells where
one can apply arguments from electron gas theory. It is
the objective of the present article to call this approach
into question and to employ instead arguments that are
solely based on the electronic pair-density of inhomo-
geneous realistic systems.
We mention here only in passing that it is inad-

missable to interpret a single KS-equation out of the set
of N as the Schrödinger equation of a single electron
associated with a certain orbital cisðrÞ: This would
imply the assumption that the N-electron wavefunction
of the interacting system is just a Hartree product of N

different orbitals cjsðrÞ ðj ¼ 1yNÞ; each associated
with a particular electron. If this were the case, the extra
potential for the ith orbital cisðrÞ would consist of a
Poisson integral with a charge density rðrÞ � jcisðrÞj

2

because the electron associated with cisðrÞ does not see
its own charge density. As a result, V̂extðr; sÞ would
become orbital-dependent.
A striking peculiarity of the Hartree–Fock approx-

imation consists in the property of the resulting non-
local (i.e., non-multiplicative) potential in that there is
an orbital by orbital cancellation of the contribution of
each orbital (not electron!) to that Poisson integral and
an analogous portion in the exchange potential. This
applies similarly to the corresponding expressions in the
total electronic Coulomb energy. The ‘‘Self-Interaction
Corrected’’ (SIC-) method suggested by Perdew and
Zunger [4] attempts to simulate this feature by using an
effective charge density rðrÞ � jcisðrÞj

2 in the Poisson
integral of the associated orbital-equation and in the
direct electronic Coulomb energy, and appropriately
correcting the DFT-expression for the exchange part.
This leads again to an orbital-dependence of the extra
potential in the modified KS-equations, in fundamental
conflict with the properties of V̂extðr; sÞ emphasized
above.
Because of the principle of indistinguishability the

N-electron wavefunction of a non-interacting system
must be a Slater determinant, and hence each electron
appears with equal probability in each orbital.
As the KS-equation for an orbital cisðrÞ does not

represent the Schrödinger equation of some particle out
of the set of N; any attempt to remove self-interaction in
the potential of this equation is in conflict with this
principle. The only place where self-interaction can or
has to be removed is the total electron–electron energy
where exchange, Coulomb- and residual Pauli-correla-
tion can consistently be accounted for in complete
accord with the principle of indistinguishability. For this
reason our considerations in constructing a useful
approximation to Exc will primarily focus on this
expression. In this context the so-called sum-rules,
which we shall greatly depend on, prove to be an
indispensable tool in avoiding self-interaction. The
generic orbital-independence of self-interaction will
become apparent from our discussion at the end of
Section 2.
Occasionally the KS-equations are discussed as

if they represented an approximation to the Dyson
equations corresponding to the quasiparticle branch.
(As regards their application see e.g., Ref. [3]). These
equations describe, in fact, individual quasiparticles in
the embedding system of N � 1 identical particles which
respond to the motion of the particle under study
(see [3–7]). The presence and response of this embedd-
ing system is described by a non-local, energy-dependent
effective potential, fundamentally different from
V̂extðr; sÞ in the KS-equations. The quasi-particle
amplitudes that solve these effective one-particle equa-
tions form a complete set of functions, which are,
however, not orthogonal to each other, and only
the infinite sum of their square moduli yields the
particle density. By contrast, the KS-density is given
by the sum of the square moduli of the N lowest-lying
orbitals which are orthogonal. Hence, despite the
apparent similarity of the two types of equations their
conceptual foundation and physical content are com-
pletely different.
It should clearly be recognized that the theorem by

Hohenberg and Kohn [8], generalized by v. Barth and
Hedin [9], merely proves the uniqueness of this
potential, once rsðrÞ is given. It does not prove its
existence. However, it has been shown by Chayes et al.
[10] that V̂extðl; r; sÞ exists on a discrete lattice for all
N-electron systems where rmðrÞ ¼ rkðrÞ; and for all
values of l in question. There are reasons why this
existence proof may not apply to spin-polarized
systems (see [11,12]). Nevertheless, throughout most
of the current article we shall assume V̂extðr; sÞ to exist
also in the case of collinearly spin-ordered systems.
Exceptions and their consequences will be discussed in
Section 5.
The standard procedure in deriving V̂extðl; r; sÞ

builds on the property of the total energy E of
the system to be stationary against changes of the
densities rsðrÞ caused by a perturbational potential
ṼperturbðrÞ of infinitesimal magnitude. This variational
property of E is exploited in deriving one-particle
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equations that prove to be identical with the KS-
equations (see [13]).
Invoking the Hellmann–Feynman theorem one can

show that the total energy of the interacting N-electron
system can be expressed by the kinetic energy of the
non-interacting system moving in the potential VextðrÞ þ
V̂extðr; sÞ; plus expressions that depend on rðrÞ and rsðrÞ
only. The contribution of the electron–electron interac-
tion contains the exchange-correlation energy Exc which
is of central importance to the DFT-framework.
Although DFT is aimed at treating realistic electron

systems within a sufficiently small accuracy margin to
suit the experimental demands in studying phenomena
in chemistry and solid-state physics, the approximations
made in relating Exc to the densities rsðrÞ can hardly be
justified and seem to be inappropriate (See e.g., [17]). As
already alluded to in the beginning, the most popular
and surprisingly successful approximation to Exc rests
on the assumption that the system under study, whose
densities will definitely be very inhomogeneous, can be
subdivided into sufficiently small cubes where the
densities may be regarded as homogeneous (see [9]).
Although the validity of this argument seems to be
supported by the early success of the Thomas–Fermi vs.
Weizsäcker–Kirzhnits-theory in expressing the kinetic
energy of many-electron systems by a density functional
including spatial first and second derivatives, there is
reason to believe that this (in part limited) success must
have a different explanation because of the following
considerations: the basic elements of this theory are
orthogonal plane waves which are normalized to unity
within the volume of constant density. Each plane wave
state for spin-up and spin-down is occupied once up to
the Fermi-level. All this in accord with the Pauli
principle if and only if these states are mutually
orthogonal. To guarantee this orthogonality they have
to be subject to periodic boundary conditions at the
cube surface. Hence, their k-vectors are exceedingly
discretized, and the plane wave of lowest energy to be
occupied first would refer to k ¼ 0: This amounts to
already one electron in the small cube under study, more
than would be admissable in atoms with a sufficient fine-
structure of their spatial subdivision. For that reason, it
seems rather meaningless to equate the actual density
within that cube to a highly degenerate electron gas.
Notwithstanding these doubts which have often been
reiterated by various authors, there is a rich literature
that builds on the electron gas concept and on the
conviction that the inclusion of relativistic effects and an
improved treatment of Coulomb- and residual Pauli-
correlation will also improve on the accuracy of Exc as a
functional of rsðrÞ:
Since the mid-1980s there have been attempts to

include contributions to Exc that depend on the density
gradient. In the current article we shall only refer to one
expression of this kind [18].
It is the main focus of the present study to give an
alternative explanation of the success of the electron-
gas-derived energy functionals and potentials.
Our objective is to show that Exc depends crucially on

the pair-density. Hence, the associated interaction
energy can for fundamental reasons never be brought
into a form that is a functional solely of the one-particle
densities rsðrÞ; except one would know the N-electron
wavefunction (which is a unique map of the density). Of
course, the latter cannot seriously be a matter of
discussion in DFT because it derives its strength exactly
from the avoidance of that wavefunction. We shall
demonstrate that the only legitimate procedure that
leads to an approximate and in practice useful
functional Exc½rmðrÞ; rkðrÞ	 must exploit general proper-
ties of the system’s pair-correlation function for parallel
and anti-parallel spin orientations which do not depend
on details of the wavefunction. Refinements that would
go beyond that level of approximation would definitely
require pair-density information from the exact wave-
function.
The exchange-correlation potential we shall be arriv-

ing at, differs in many details from those presently used
by the majority of DFT-practitioners, the more ad-
vanced potentials known by the prefix ‘‘GGA’’ which
stands for ‘‘generalized gradient approximation’’. These
potentials originate essentially in the work of Perdew
and associates [18–21]. The two potentials used in the
present work as a reference will be quoted as ‘‘PW’’ [19]
and ‘‘GGA-I’’ [18]. We have performed self-consistent
calculations on the elemental metals of the 3d- and 4d-
series using alternatively the PW- or the GGA-I-
potential or our potential. The calculations were based
on the Full Potential Linear Augmented Plane Wave-
(FLAPW-)computer code ‘‘Wien 97’’ [22] by Schwarz
and associates. This code accounts for relativistic effects
by solving the scalar-relativistic KS-equations (as for
this feature see e.g., [23,24]). Coulomb correlation for
anti-parallel spin orientation proves to be non-negligible
in the correct prediction of spin-order and the resulting
magnetic moments.
In comparing the strongly structured density of states

(DOS) which result from using these different expres-
sions for Vxcðr; sÞ we find for practically all metals of the
3d-, 4d-series almost complete agreement except for
occasional shifts of less than 1=10 eV: The same can be
said as regards the magnetic moments.
We have also calculated the DOS of the elemental

insulators (semi-conductors) C, Si, Ge and GaAs and, in
addition their cohesive energies. The GGA-I-values of
the latter prove to be very close to the results obtained
with our approach whereas the PW-values differ
distinctly. In view of this surprising agreement we
conclude that the tremendous effort that has been put
into the derivation of Exc½rmðrÞ; rkðrÞ	 and Vxcðr; sÞ in
terms of an advanced inhomogeneous electron gas
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theory has remarkably little effect. One is hence led to
suspect that the electron gas model, even when it is
corrected for weak inhomogeneity, is not well justified
for realistic systems, and improvements within the
model itself may not be expected to carry over to the
actually very inhomogeneous systems. The indisputable
merits of the GGA-approach in predicting properties of
atoms and molecules may be connected with a specific
error cancellation for systems of this kind. The results
for solids are not uniquely in favor of GGA.
Section 2 deals with properties of the pair-density and

highlights on the importance of avoiding self-interac-
tion.
In Section 3 we comment on some essential ingre-

dients of DFT and derive a simple exchange-correlation
potential based on a local spin-density approximation
(LSDA). The way we shall justify the LSDA-potentials
will also shed light on the so-called overbinding effect
which bears on the observation that LSDA-based
calculations yield binding energies for molecules and
solids that are in general too large. We, furthermore,
briefly comment on the proposal of ‘‘screened ex-
change’’ and ‘‘half- and half’’-concepts of improving
on the ‘‘exchange-only’’-approximation to Exc by using
a linear mixture of the ‘‘exchange-only’’-, LSDA- and
GGA-expressions.
Section 4 is devoted to ferromagnetic order. The

LSDA-approximation will prove helpful in understand-
ing the occurrence of spin-order. The latter can be
predicted from the electronic structure of spin-sym-
metric systems by means of the Stoner criterion which
we derive in a particularly simple way. Interestingly,
only our LSD-approximation and the PW-potential do
not yield ferromagnetic order for fcc-Pd, in agreement
with the experiments. By contrast, the GGA-I-potential
leads to a weak magnetic moment in that case,
corroborating the above statement about the deba-
table merit of attempts to refine these expressions
without improved ab initio-knowledge on the exact
pair-density.
In Section 5 we shall briefly address some failures of

DFT in describing certain spin-ordered materials and
relate these insufficiencies to a possible lack of
‘‘V-representability’’.
We expressly want to state here that the various items

of N-electron theory we shall be referring to, in
particular properties of the pair-density, have frequently
been discussed in the literature, most notably by
McWeeny [25], Rajagopal et al. [26], Alonso and
Girifalco [27], Gunnarsson et al. [28], Gunnarsson and
Jones [29], Keller and Gásquez [30], Gopinathan et al.
[31] Manoli and Whitehead [32] and more recently by
many workers in the field of DFT. Much of the material
has been reviewed in the books by Dreizler and Gross
[33] and by Parr and Wang [34]. Notwithstanding the
plethora of these contributions to the correlation
problem in DFT, there seems to be still a lack of
understanding of the apparent success of electron gas
theory in DFT and its relation to the ab initio approach.
The current analysis attempts to contribute to this
understanding by taking a fresh look from a different
angle.
2. The pair-density and the self-interaction problem

We take a very general starting point by considering
the Hamiltonian of an N-electron system embedded in
the potential of Nn atomic nuclei whose atomic numbers
will be denoted by Zn: We shall be using atomic
(Hartree-)units throughout this article. The potential
set up by the Nn nuclei will be denoted by VextðrÞ: Thus
we have

VextðrÞ ¼
XNn

n¼1

Zn

jr� Rnj
;

and the Hamiltonian reads

Ĥinteract: ¼
XN

k¼1
�1
2
r2

k þ VextðrkÞ
� �

þ 1

2

X
k;lak

1

jrk � rl j
:

ð1Þ

We have labeled Ĥ by an index ‘‘interact.’’ to distinguish
this Hamiltonian from that of the non-interacting
system to be introduced later.
The ground-state wavefunction of the system which

we shall exclusively be referring to

C0ðx1; x2;y; xNÞ

satisfies the time-independent Schrödinger equation

Ĥinteract: C0ðx1; x2;y; xNÞ ¼ E0C0ðx1; x2;y; xNÞ ð2Þ

for the lowest energy eigenvalue E0: Here we have
introduced the common notation for particle coordi-
nates: x ¼ ðr; sÞ stands collectively for the real-space
coordinate and the spin-coordinate s ¼ 71 of an
electron.
The spin-densities are given by

r0sðrÞ ¼ N

Z
jC0ððr; sÞ; x2;y; xNÞj2 d4x2yd4xN ; ð3Þ

and the magnetization

mðrÞ ¼ mB½r0mðrÞ � r0kðrÞ	e; ð4Þ

where mB denotes the Bohr magneton, and e represents a
unit vector parallel to the axis which defines the spin
orientation.
The spin-densities integrate to the associate number of

particles

Ns ¼
Z

r0sðrÞ d
3r; ð5Þ
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as a result of which we have

N ¼
Z

r0ðrÞ d3r where r0ðrÞ ¼
X
s

r0sðrÞ: ð6Þ

The pair-density is given by

r20ðx0; xÞ � rðs
0;sÞ

20 ðr0; rÞ

¼NðN � 1Þ
Z

jC0ðx0; x; x3yxNÞj2

d4x3yd4xN ð7Þ

by means of which the electron–electron interaction
energy can be cast as

/Ve2eS ¼ C0
1

2

X
k;lak

1

jrk � rl j

�����
�����C0

* +
ð8Þ

¼ 1

2

X
s0;s

Z Z
rðs

0;sÞ
20 ðr0; rÞ
jr0 � rj d3r0 d3r: ð9Þ

On introducing the pair-correlation function g0s0sðr0; rÞ
or, alternatively, the correlation factor f 0s0sðr0; rÞ ¼ 1�
g0s0sðr0; rÞ; the pair-density can be recast as
rðs

0;sÞ
20 ðr0; rÞ ¼ r0s0 ðr0Þr0sðrÞg0s0sðr0; rÞ

¼ r0s0 ðr0Þ r0sðrÞ � r0s0 ðr0Þr0sðrÞf 0s0sðr0; rÞ: ð10Þ

Hence, /Ve2eS may be expressed:

/Ve2eS ¼ 1

2

Z Z
r0ðr0Þ r0ðrÞ
jr0 � rj d3r0 d3r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Vc

þ
X

s

Z
r0sðrÞexcðr; sÞ d

3r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Exc

; ð11Þ

where

excðr; sÞ ¼ �1
2

X
s0

Z
r0s0 ðr0Þf 0s0sðr0; rÞ

jr0 � rj d3r0 ð12Þ

represents the ‘‘exchange-correlation energy per parti-
cle’’. Thus we have

/Ve2eS ¼ Vc þ Exc: ð13Þ

Here Exc denotes the exchange-correlation energy,
which is obviously spin-dependent.
It is worth mentioning that Exc is commonly written

in the form

Exc ¼
Z

r0ðrÞ excðr0mðrÞ; r0kðrÞÞ d
3r

which goes back to the paper by Barth and Hedin [9]
where a different subdivision of the system into spin-
dependent portions has been used. Obviously, this
standard DFT-expression is remarkably different from
ours in that the exchange-correlation energy per particle
is not explicitly spin-dependent and multiplied by the
total charge density r0ðrÞ: This form makes it difficult to
trace exc back to our correlation factors obeying the
simple sum rules derived below.
The spin-independent portion of the electron–electron

interaction energy, i.e. Vc; is commonly referred to as
‘‘classical Coulomb interaction’’. As regards the physics
described by this quantity, a few comments may be in
order.
We consider a classical system of statistical mechanics

that consists of N identical point charges of some mass
m0: The potential that a point charge feels at some
position r and which is generated by the N � 1
remaining point charges, forming a distribution
rðrÞN�1ðr0Þ around r; is just a Poisson integralZ

rðrÞN�1ðr0Þ
jr� r0j d

3r0:

The probability density of finding that point charge at r
is given by

1

N
rðrÞ

which follows from the fact that the particles are
identical. As a consequence, each particle occurs with
the same probability at r on the average. Hence, the
expectation value of the particle interaction with the
residual system becomes

ve2e ¼
1

N

Z
rðrÞ

Z
rðrÞN�1ðr0Þ
jr� r0j d

3r0

" #
d3r :

As the particles are identical they all contribute the same
to the total interaction energy which is hence N times
the above integral, divided by the double-counting
factor 2:

/Ve2eS ¼ 1

2

Z Z
rðrÞrðrÞN�1ðr0Þ

jr� r0j d3r d3r0; ð14Þ

that is

/Ve2eSa
1

2

Z Z
rðrÞrðr0Þ
jr� r0j d

3r d3r0: ð15Þ

Obviously, the latter integral on the right-hand side does
not represent the classical Coulomb interaction of point
charges because it contains a positive portion of self-
interaction introduced by replacing rðrÞN�1ðr0Þ with rðr0Þ:
Only the former charge density integrates to N � 1
particles which are seen by some point charge picked out
of the system of N: If one, nevertheless, expresses
/Ve2eS by the integral on the right-hand side of
Eq. (15), one has to subtract that portion of self-
interaction which would correspond to Exc:
A consequence of this subdivision is that in the case of

a fictitious system of N interacting electrons with zero
correlation the pair-density is not given by

rðs
0;sÞ

20 ðr0; rÞ ¼ r0s0 ðr0Þr0sðrÞ;
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i.e., it is even in that case not given by a simple product
of the densities. Otherwise /Ve2eS were just identical
with the rhs of Eq. (15). We shall briefly return to this
point at the end of this section.
The occurrence of Exc is not a particular feature of

many-body quantum mechanics, only its spin-depen-
dence. To make this apparent, we rewrite Eq. (14) by
explicitly introducing the spin-dependences:

/Ve2eS ¼ 1

2

X
s0;s

Z Z rsðrÞr
ðr;sÞ
Ns0 �ds0s

ðr0; s0Þ
jr� r0j d3r d3r0:

ð16Þ
Comparing this expression for /Ve2eS with Eq. (9) we
recognize that the pair-density is simply connected to

rðr;sÞNs0�ds0s
ðr0; s0Þ through

rðs
0sÞ

20 ðr0; rÞ ¼ r0sðrÞ r
ðr;sÞ
Ns0�ds0s

ðr0; s0Þ: ð17Þ

Because of the antisymmetry of C0 it vanishes if two
coordinates are equal:

C0ðx0; x; x3;y;xNÞ � 0 for x0 ¼ x:

It follows then from inspection of Eq. (7) that

rðs
0sÞ

20 ðr0; rÞ ¼ 0 for r0 ¼ r and s0 ¼ s

and furthermore,

rðr;sÞNs�1ðr
0; sÞ ¼ 0 for r0 ¼ r:

This result only restates the well-known fact that the
probability of finding one of the Ns � 1 particles with
spin s at the position r of a particle with the same spin
equals zero. As one leaves the point r; the density

rðr;sÞNs�1ðr
0; sÞ rises again, a behavior that just reflects the

appearance of the so-called Fermi-hole around r:
There is no analogous equation for the particles of

opposite spin, that is

rðr;sÞNs0
ðr0; s0Þa0 for r0 ¼ r and s0as:

But the density drops, of course, around r due to the
spin-independent Coulomb repulsion of the particles.
We shall exploit these general properties of

rðr;sÞNs0�ds0s
ðr0; s0Þ farther into this section.

By definition rðr;sÞNs0 �ds0s
ðr0; s0Þ has the propertyZ

rðr;sÞNs0 �ds0s
ðr0;s0Þ d3r0 ¼ Ns0 � ds0s ð18Þ

which, because of Eq. (17) can equivalently be cast asZ
rðs

0sÞ
20 ðr0; rÞ d3r0 ¼ r0sðrÞðNs0 � ds0sÞ: ð19Þ

This equation states that the one-particle density is
obtained from a real-space integration of the pair-
density, an interconnection that cannot be inverted. It is
the latter which stands in the way of an ab initio-DFT
because in its practical form DFT hinges on the
principle of expressing the electronic pair-interaction
as a functional of the one-particle density and its
gradient without drawing further information from the
N-electron wavefunction. For this reason we adopt the
standpoint that a consistent approximation to pair-
density-related expressions can only be obtained by
resorting to universal properties of the pair-density. In
so doing, the so-called sum rule proves to be an
exceedingly helpful tool. The result is immediate from
inserting the pair-density, as given by Eq. (10), into the
above Eq. (19) and can be cast asZ

r0s0 ðr0Þf 0s0sðr0; rÞ d
3r0 ¼ ds0s 8r; ð20Þ

which actually represents two sum rules. It is advisable
to rewrite this result less compactly:Z

r0mðkÞðr0Þf 0mmðkkÞðr0; rÞ d
3 r0 ¼ 1 8r ð21Þ

andZ
r0mðkÞðr0Þf 0mkðkmÞðr0; rÞ d

3 r0 ¼ 0 8r: ð22Þ

It is obvious from the latter equation that f 0mkðkmÞðr0; rÞ
cannot be positive throughout the space under study
because r0mðkÞðr0Þ is positive everywhere.
Since the pair-density for like spin has the property

rðssÞ20 ðr0; rÞ ¼ 0 8r0 ¼ r it follows from inspection of
Eq. (10) that

f 0ssðr0; rÞ ¼ 1 8r0 ¼ r: ð23Þ
This constitutes a universal property which is indepen-
dent of the strength of the electron–electron interaction.

Finally, the asymptotic behavior of rðr;sÞNs0�ds0s
ðr0; s0Þ for

jr0 � rj-N represents another feature which we shall
exploit as well. For s0 ¼ s; fixed r and jr0 � rj sufficiently
large the density rðr;sÞNs�1ðr

0; sÞ may be expected to attain
the unperturbed form rsðr0Þ; because the ‘‘electron
probe’’ at r is far away. However, the density
rðr;sÞNs�1ðr

0; sÞ must integrate to Ns � 1 electrons, accord-
ing to Eq. (18) which means, in the limit of sufficiently
large jr0 � rj;

rðr;sÞNs�1ðr
0; sÞ-Ns � 1

Ns
rsðr0Þ: ð24Þ

Similarly one has

rðr;sÞNs0
ðr0; s0Þ-rs0 ðr0Þ for s0as: ð25Þ

Employing Eqs. (10), (17), (24) and (25) we obtain for
the correlation factors f 0s0sðr0; rÞ the asymptotic form:

lim
jr0�rj-N

f 0ssðr0; rÞ ¼
1

Ns
and

lim
jr0�rj-N

f 0s0sðr0; rÞ ¼ 0 for s0as: ð26Þ

The salient point of our approach to the pair-density
problem consists in assuming correlation factors in the
simplest conceivable form that complies with the sum
rules (Eqs. (21) and (22)) and with the universal
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properties described by Eqs. (23)–(25). Fig. 1 gives a
schematic view of the dependence of the pair-densities as
a function of r0 (replaced by z0 on a z0-axis across the
structure) if one keeps r (i.e., z) fixed. Oscillatory fine
structure has been averaged out. These dependences
transform into the functional behavior of the correlation
factors shown in Fig. 2.
The correlation factor f 0s0sðr0; rÞ for s0as must display

a cusp at r0 ¼ r (i.e., z0 ¼ z) which has been shown by
Kato [35] to arise from the 1=jr� r0j-dependence of the
electron–electron interaction. Because of the sum rule
(Eq. (22)) this correlation factor must change its sign at
least once in its real-space domain. For that reason the
associated ‘‘Coulomb-hole’’-contribution to excðr; sÞ;
i.e.,

�
X
s0

s0as

Z
r0s0 ðr0Þf 0s0sðr0; rÞ

jr� r0j d3r0

which contains the sum rule integrand as a numerator
under the integral, does not have the form of a
monopole-type potential but rather has multipole-
properties.
By contrast, the ‘‘Fermi-hole’’-contribution possesses

monopole-character. This becomes immediately evident
if one approximates f 0ssðr0; rÞ roughly by a function

f 0ssðr0; rÞ ¼
1 if jr0 � rjprs;

E0 else;

�
ð27Þ

where Ns has been assumed to be very large. The
quantity rs denotes the so-called Wigner–Seitz radius
defined by

4 p
3

r0sðrÞ r3s ¼ 1; ð28Þ

where

r0sðrÞ ¼
1

V
ðrÞ
sph

Z
V

ðrÞ
sph

r0sðr0Þ d
3r0 ð29Þ
and V
ðrÞ
sph is the volume of that ‘‘Wigner–Seitz-sphere’’

centered at r and having the radius rs:
The above Eqs. (27)–(29) are just another form of the

sum rule (Eq. (21)) for the particular choice (27) of
f 0ssðr0; rÞ: Thus the Fermi-hole contribution to excðr;sÞ
becomes

�1
2

Z
r0sðr0Þf 0ssðr0; rÞ

jr� r0j d3r0 ¼ �1
2

Z
V

ðrÞ
sph

r0sðr0Þ
jr0 � rj d

3r0: ð30Þ

To illustrate the importance of this result we rewrite the
expression for Vc (Eq. (11)) in the form:

1

2

Z Z
r0ðr0Þ r0ðrÞ
jr0 � rj d3r0 d3r

¼ 1

2

X
s0;s
s0as

Z Z
r0s0 ðr0Þ r0sðrÞ

jr0 � rj d3r0 d3r

þ
X
s

Z
r0sðrÞV̂ðr; sÞ d3r; ð31Þ

where

V̂ðr; sÞ ¼ 1

2

Z
V 0

r0sðr0Þ
jr0 � rj d

3r0 þ 1

2

Z
V

ðrÞ
sph

r0sðr0Þ
jr0 � rj d

3r0: ð32Þ

where V 0 supplements V
ðrÞ
sph to give the original

volume V :
The second integral on the right-hand side of Eq. (32)

is responsible for the self-interaction of the electron
occupying the sphere around r; and this is obviously an
orbital-independent quantity! Clearly, this portion is
exactly canceled by expression (30). The first integral
on the right-hand side of Eq. (31) does not contain
self-interaction because electrons associated with the
‘‘spin-up’’-density do not contribute to the ‘‘spin-
down’’-density and vice versa.
As mentioned earlier in this section, the pair-density

of a fictitious interacting system with zero Pauli- and
Coulomb-correlation is not given by the product of its
spin-densities. It is true that one has in this case
fs0;sðr0; rÞ � 0 for s0as: But for s0 ¼ s the associated
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correlation factor is non-vanishing, otherwise the sum
rule (21) would not be satisfied. More specifically, we
have fs sðr0; rÞ � 1=Ns which leads to

Exc ¼ �1
2

X
s

1

Ns

Z Z
r0sðr0Þ r0sðrÞ
jr0 � rj d3 r0 d3r: ð33Þ

That means: the exchange-correlation energy is non-zero
for zero exchange and correlation!
For a spin-symmetric system, i.e. when r0mðkÞðrÞ ¼

1
2
r0ðrÞ; Eq. (33) may be cast as

Exc ¼ � 1
N

1

2

Z Z
r0ðr0Þ r0ðrÞ
jr0 � rj d3 r0 d3 r

� �
¼ � 1

N
Vc;

where Vc=N is the self-energy of the system. Hence we
have in this particular case

/Ve2eS ¼Vc þ Exc

¼ 1� 1

N

� �
1

2

Z Z
r0ðr0Þ r0ðrÞ
jr0 � rj d3 r0 d3 r:

This may equivalently be stated:

rðrÞN�1ðr0Þ ¼ p0ðr0ÞðN � 1Þ;

where p0ðrÞ ¼ r0ðrÞ=N is the contribution of each
particle to the total density. Hence, in the absence of
any correlation the particle at r sees the N � 1 remaining
particles by their density p0ðr0ÞðN � 1Þ which is no
longer perturbed by the particle at r:
We summarize this section by stating that the sum

rules (21) and (22) constitute an indispensable tool in
deriving approximate expressions for the electron–
electron interaction energy and provide a criterion as
to what extent self-interaction must be expected to
occur.
3. Dealing with exchange and correlation

So far we have not used any DFT-specific argument.
This will, in principle, apply as well to everything that
follows. As already alluded to in Section 1, one can
reduce the original N-electron system to an equal-
density non-interacting substitute system by scaling the
electron–electron interaction down to zero which we
schematically indicate by

Ĥinteract:-Ĥnon-interact:;
that is in detailXN

k¼1
�1
2
r2

k þ VextðrkÞ þ V̂extðl; rk;skÞ
� �

þ l
2

X
k;lak

1

jrk � rl j
-ðl ¼ 1-l ¼ 0Þ

-
XN

k¼1
�1
2
r2

k þ VextðrkÞ þ V̂extðrk; skÞ
� �

:

As a consequence of which we have

C0ðx1; x2;yxNÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
exact wavefunction

- F0ðx1; x2;yxNÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Slater determinant

+ +
r0sðrÞ r0sðrÞ

so that

r0sðrÞ ¼ r0sðrÞ:

The Schrödinger equation of the substitute system can
be decomposed into N one-particle equations, the so-
called Kohn–Sham (KS-) equations

�1
2
r2 þ VextðrÞ þ V̂extðr; sÞ

� �
ci sðrÞ ¼ ei;s ci sðrÞ; ð34Þ

and hence

r0sðrÞ ¼
XNs

i¼1
jcisðrÞj

2; r0ðrÞ ¼
X
s

r0sðrÞ: ð35Þ

The expectation value of /C0jĤinteract:jC0S ¼ E0 can be
cast as

E0 ¼ /T̂Se2e þ
Z

r0ðrÞVextðrÞ d3r þ Vc þ Exc;

where /T̂Se2e is the kinetic energy of the interacting
system.
Employing the Hellmann–Feynman theorem

/C0jĤinteract:jC0S can be rewritten

E0 ¼ /T̂S0 þ
Z

r0ðrÞVextðrÞ d3r þ Vc þ %Exc; ð36Þ

where

%Exc ¼
X
s

Z
rsðrÞ%excðr; sÞ d3r ð37Þ
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and

%excðr; sÞ ¼ �1
2

X
s0

Z
r0s0 ðr0Þ %f0s0sðr0; rÞ

jr0 � rj d3r0 ð38Þ

with %f 0s0sðr0; rÞ denoting

%f 0s0sðr0; rÞ ¼
Z 1

0

f 0s0sðl; r0; rÞ dl:

The correlation factor f 0s0sðl; r0; rÞ is defined by Eq. (10)
where the pair-density at coupling strength l has to be
inserted on the left-hand side. The quantity /T̂S0

represents the kinetic energy of the non-interacting
substitute system.

/T̂S0 ¼
X
s

XNs

i¼1

Z
c�

isðrÞð�1
2
r2ÞcisðrÞ d3r: ð39Þ

It is clear from the considerations of the preceding
section that the universal properties of f 0s0sðl; r0; rÞ are
not affected by averaging over the coupling strength.
That means that the sum rules (Eqs. (21) and (22)) carry
over to %f 0s0sðr0; rÞ without any change. This is of crucial
importance to our construction of %excðr; sÞ:
At this point it should be recalled that Kohn and

Sham in their pioneering paper [13] did not derive
expression (36) for E0 by invoking the Hellmann–
Feynman theorem. As a consequence, their form of %Exc

was not accessible to an analysis in terms of correlation
factors.
In view of the general shape of the correlation factors

as depicted in Fig. 2 it is suggestive to give them the
following analytical form:

%f 0s0sðr0; rÞ ¼

Fðjr0 � rj=rsðrÞÞ for s0 ¼ s;

c � g
jr0 � rj
rs0 ðrÞ

� �
�

�Fðjr0 � rj=rs0 ðrÞÞ for s0as;

8>>><
>>>: ð40Þ

where

Fðjr0 � rj=rsðrÞÞ ¼ exp �jr0 � rj2

r2sðrÞ

" #
ð41Þ

and

0oco1 and g40: ð42Þ

As the wavefunction C0 changes only its sign on
interchanging the coordinates of two particles, the
pair-density must be symmetric:

rðs
0sÞ

20 ðr0; rÞ ¼ rðss
0Þ

20 ðr; r0Þ

which carries over to the correlation-factors f 0s0sðr0; rÞ:
Obviously, the above analytical form we have chosen
lacks this property because of the r-dependence of rsðrÞ:
It appears, however, that this deficiency does not lead to
unphysical inconsistencies.
The diameter 2rsðrÞ of the volume around r; within
which the two correlation factors are non-zero on the
scale of interest, and the ratio c=g are uniquely
determined by the sum rules (Eqs. (21) and (22)). To
elucidate the particular physical content of the sum rule
(21), Fig. 3 sketches the relevant items within an atom
depicted by a point cloud of electron positions around
the center of the atom. This atom may be part of a
molecule or a solid in which case the point distribution
close to the periphery would not be spherically
symmetric any more. Note that in the figure the radius
of the Wigner–Seitz (WS-) sphere, containing one
electron, is still denoted by its historical name ‘‘rs’’.
The diameter of this sphere is a measure of the non-
locality of exchange and correlation. Clearly, if the atom
contains only one electron, as in the case of a hydrogen
atom, the sphere blows up to comprise the entire atom if
one can approximately attach a finite radius to it (rat in
the figure). If this H-atom is a neutral part of an organic
molecule, for example, the spin-densities rsðrÞ integrate
only to E1=2 for either spin-direction within the atom.
Hence, the WS-sphere blows up even further. The
following approximations that lead to the ‘‘local spin-
density’’ (LSD-) expressions for excðr; sÞ and Vxcðr;sÞ
become therefore questionable in this limiting case. This
applies to the electron gas-derived LSD-expressions just
as well, but this matter is commonly given little attention
by DFT-practitioners.
Fig. 3 also helps to understand a fundamental

difficulty one runs into with spin-ordered N-electron
systems of heavy atoms where spin–orbit coupling is
large so that the spin-orientation changes its direction
within the atom. Clearly, the sum rules require well-
defined spin-densities. Thus, in the presence of strong
spin–orbit coupling or spiral magnetic fields one can
consistently define a local exchange-correlation energy
per particle, i.e., excðr; sÞ only as long as the spin-
orientation stays practically constant within the
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WS-sphere, that is, if the relative mean square deviation
from the average spin-direction within the sphere
remains small compared to unity. So far there has been
little awareness of this problem in the treatment of non-
collinear spin-order (see e.g., [14–16]).
In most of the systems of interest r0sðrÞ is large

enough to ensure values of 2rsðrÞ that are small
compared to the diameter of the atoms. Where the
inhomogeneity of r0sðrÞ is large, r0sðrÞ itself attains
large values and rsðrÞ becomes small. Hence, it appears
to be an admissable assumption to approximate r0sðr0Þ
within the WS-sphere around r by its first-order Taylor
polynomial:

r0sðr0Þ ¼ r0sðrÞ þ rr0sðrÞ � ðr0 � rÞ: ð43Þ
On inserting this into the sum rule (21) one recognizes
that the second integral with rr0sðrÞ in front becomes
zero which is an important result and explains why the
local, spin-dependent expressions for excðr; sÞ and
V̂extðr; sÞ we shall arrive at are meaningful approxima-
tions to the electron systems of atoms, molecules and
solids.
The first integral with r0sðrÞ as a prefactor yields

r3sp
3=2: Hence, we have

rsðrÞ ¼
1ffiffiffi
p

p ½r0sðrÞ	
�1=3: ð44Þ

Likewise, the sum rule (22) for s0as yields

c ¼ 2g=
ffiffiffi
p

p
: ð45Þ

The integral defining excðr; sÞ (Eq. (38)) can be evaluated
by using again the approximation (43). The result is

emðkÞxc ðrÞ ¼ �½r0mðkÞðrÞ	
1=3 � c ð1� p=4Þ½r0kðmÞðrÞ	

1=3;

ð46Þ
where the second term on the right-hand side is due to
Coulomb correlation as it is directly connected to
%f 0mkðkmÞðr0; rÞ:
To obtain the sought-for extra potential V̂extðr; sÞ that

appears in the KS-equations, one exploits the fact that
the total energy in the ground-state must be stationary
against perturbation by an external potential of
infinitesimal magnitude that causes density changes
dr0sðrÞ: Because of Eq. (46) and

Exc ¼
Z

r0mðrÞemxcðrÞ d
3r þ

Z
r0kðrÞekxcðrÞ d

3r ð47Þ

we have

dExc ¼
X
s

Z
Vxcðr; sÞ dr0sðrÞ d3r; ð48Þ

where

VmðkÞ
xc ðrÞ ¼ � 4

3
½r0mðkÞðrÞ	

1=3 � c ð1� p=4Þð½r0mðkÞðrÞ	
1=3

þ 1

3
r0kðmÞðrÞ½r0mðkÞðrÞ	

�2=3Þ:
To make this result readily comparable to the notation
of other authors we rewrite the factors in front of the
two expressions on the right-hand side and introduce
relative spin-densities

xmðkÞðrÞ ¼ r0mðkÞðrÞ=r0ðrÞ

so that Vxcðr; sÞ attains the form

VmðkÞ
xc ðrÞ ¼ � 3

2
ð3=pÞ1=3 r0ðrÞ½ 	1=3

� ax½2xmðkÞ	1=3 þ
3

4
ac ½2xkðmÞ	1=3
��

þ 1

3
ðxkðmÞ=xmðkÞÞ½2xmðkÞ	1=3

��
; ð49Þ

where

ax ¼ 0:716 ð50Þ

and

ac ¼ c
4� p
9

p
3

h i1=3
22=3 ¼ 0:154 c: ð51Þ

Expression (49) was already derived earlier by Eckardt
and Fritsche [36] and will therefore be referred to as
‘‘EF-potential’’. A potential based on very similar
considerations is due to Gollisch [37]. We want to
emphasize here that the ‘‘EF-potential’’ was originally
only applied to the case of ferromagnetic Ni metal. All
the results presented in the current study are new.
In the spirit of the commonly used parlance Eqs. (46)

and (49) have to be referred to as the ‘‘local spin-density
approximation’’ (LSDA) to the respective exact expres-
sions.
If one neglects the correlation of unlike spin and

confines oneself to spin-symmetric systems Eq. (49)
reduces to

VmðkÞ
xc ðrÞ ¼ �ax

3

2
ð3=pÞ1=3½r0ðrÞ	

1=3:

This represents the so-called Xa expression which was
strongly favored in the 1970s by Slater and associates
(see e.g., [38]). By using Hartree–Fock total energies for
the light atoms as a reference one could show that the
optimal ax-values lie in an interval between 2=3 and one.
Our value of 0.716 results from the particular Gauss-
form we have chosen for f 0ssðr0; rÞ: If one were to choose
3j1½jr0 � rj=rsðrÞ	
jr0 � rj=rsðrÞ

� �2

; ð52Þ

a function whose shape is very close that of a Gaussian,
one would obtain

ax ¼ 2=3:

Note that j1 denotes the spherical Bessel function of
index one. The above function (52) constitutes the exact
correlation factor f 0ssðr0; rÞ for a non-interacting homo-
geneous N-electron system. In that case rs is indepen-
dent of r; of course.
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In the numerical calculations of the ensuing section
the function

Fðjr0 � rj=rsðrÞÞ has been assumed to have the form
(52), but, as already indicated in the above formula, with
a r-dependent rs determined by the sum rule Eq. (21) for
spatially varying densities.
The motivation for using (52) is only to ensure the

ideal limiting case of a non-interacting homogeneous
electron gas. Hence we shall employ expression (49) for
V

mðkÞ
xc ðrÞ with ax ¼ 2=3: The quantity ac represents a

tunable parameter which we set ac ¼ 0:04 yielding the
best overall agreement with results alternatively based
on the PW- or GGA-I-exchange-correlation potential.
The prefactor of ½rkðmÞðrÞ	

1=3 in Eq. (46) thus attains the
value c ð1� p=4Þ ¼ 0:054:
Because of Eqs. (35) and (39) we have

drsðrÞ ¼
XNs

i¼1
dc�

isðrÞcisðrÞ þ c:c: and ð53Þ

d/T̂S0 ¼
X
s

XNs

i¼1

Z
dc�

isðrÞ �1
2
r2

� �
cisðrÞ d3r þ c:c:;

ð54Þ

so that—together with Eq. (48)—the requirement of
stationarity reads

dE0 ¼
X
s

XNs

i¼1

Z
dc�

isðrÞ �1
2
r2 þ VextðrÞ

�

þ VHðrÞ þ Vxcðr; sÞ
�
cisðrÞ d3r þ c:c: ¼ 0:

Because of Eq. (34) this is obviously guaranteed if

V̂extðr; sÞ ¼VHðrÞ þ Vxcðr; sÞ where

VHðrÞ ¼
Z

rðr0Þ
jr0 � rj d

3r0: ð55Þ

It should be recognized, however, that the validity of
Eq. (55) presupposes that V̂extðl; r; sÞ exists within the
entire domain of l; otherwise E0 would not exist in the
form given by Eq. (36). Since, by construction, our
approximate expressions (46) and (47) do not depend on
l; as we have strongly emphasized, their existence is not
affected by a possible non-existence of V̂extðl; r; sÞ: We
shall briefly come back to this point in Section 5.
A vexing problem that is typical of LSDA consists in

the ‘‘overbinding problem’’ which refers to the observa-
tion that LSDA yields binding energies that are
generally too large (see e.g., [39]). This is surprising at
first sight because the total LSDA-energies of single
atoms, molecules and the cohesive energies of solids are
all above the exact energies in general. We take a short
digression to clarify this apparent contradiction.
The Pauli- (Fermi-hole-) correlation, described by the

first term on the right-hand side of Eq. (46), constitutes
the dominant contribution to Exc on which we shall
focus for the moment. We consider the spatial variation
of r0sðrÞ in atoms, molecules and solids. The local
approximation to excðr; sÞ at which we arrive when we
use the first-order Taylor polynomial in describing the
r0-dependence of r0sðr0Þ; yields values of excðr; sÞ at r

that are less negative than those one would obtain if one
would leave the original rsðr0Þ under the integral in
Eq. (38) for s0 ¼ s: This becomes apparent from the
following consideration. At the periphery of a single
atom where rsðrÞ is large, the linear approximation to
the r0-dependence of r0sðr0Þ becomes poor: within a
sphere of that extent the increase of the density from the
reference point r toward the direction to the nucleus
becomes sizably larger than the decrease in the opposite
direction. Consequently, r0sðrÞ is generally lower at r

than the average %r0sðrÞ over the Wigner–Seitz sphere
around r so that

ePaulixcjexactðr;sÞ ¼ � 1

2

Z
r0sðr0Þ %f 0ssðr0; rÞ

jr0 � rj d3r0

¼ � 1

2
%r0sðrÞ

Z
V

ðrÞ
sphere

%f 0s0sðr0; rÞ
jr0 � rj d

3r0

o � 1

2
r0sðrÞ

Z
V

ðrÞ
sphere

%f0s0sðr0; rÞ
jr0 � rj d

3r0

¼ � ½r0sðrÞ	
1=3:

Hence, we have

ELSDA
xc 4Eexact

xc :

We may interpret this general shortcoming of LSDA as
an incomplete cancellation of self-interaction. The
principal form of the Hartree potential Eq. (55) is
similar to ePaulixcjexact

ðr; sÞ except that it does not contain
the correlation factor and it is therefore not much
affected by this LSDA-insufficiency. This applies to Vc

as well. However, Vxcðr; sÞ derives from excðr; sÞ and
displays consequently the same deficiency by being less
negative than it should, particularly in the low-density
region. The orbitals cisðrÞ feel hence a potential
V̂extðr; sÞ that rises steeper in that low-density region,
tends to stronger localize them and thereby increases
their kinetic energy. The overall effect is therefore

DELSDA
0 ¼ ELSDA

0 � Eexact
0 40:

This deficiency is particularly effective with atoms whose
periphery is entirely low-density region. In molecules or
solids there are always interstitial regions where the low-
density of the free atoms is replaced by higher density.
That density is still not high enough, in general, to
remove the LSDA-error completely, but it will be
reduced. This can be summarized by

DELSDA
0 jatom4DELSDA

0 jcompound; ð56Þ

where

DELSDA
0 jatom ¼ ELSDA

0 jatom � Eexact
0 jatom
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and

DELSDA
0 jcompound ¼ ELSDA

0 jcompound � Eexact
0 jcompound:

From Eq. (56) it follows then

ELSDA
0 jatom � Eexact

0 jatom4ELSDA
0 jcompound

� Eexact
0 jcompound

which means

Eb ¼Eexact
0 jatom � Eexact

0 jcompoundoELSDA
0 jatom

� ELSDA
0 jcompound:

The difference on the right-hand side of this inequality
represents the binding energy in LSDA which is
obviously larger than the exact binding energy Eb:
To avoid the errors that one introduces in linearizing

the r0-dependence of rsðr0Þ around r; one can perform
the integral for %excðr; sÞ in Eq. (38) leaving rsðr0Þ under
the integral. This has been done by various authors (see
e.g., [27–29,40–48]). One finds a general improvement
over the respective LSDA-results. In particular, delicate
properties like the affinity energies of free atoms, first
and second ionization energies and energy differences
E½3dn�14s1	 � E½3dn�24s2	 for atoms of the 3d-series are
greatly improved. As regards affinity energies LSDA
fails completely.
A very promising method which ensures the absence

of self-interaction has been suggested in 1953 by Sharp
and Horton [49], again (independently) in 1976 by
Talman and Shadwick [50] and successfully been applied
to atoms by Krieger et al. [51]. It consists in forming
/Ve2eS by using a Slater determinant rather than the
exact wavefunction C0 as prescribed by Eq. (8). The
Slater determinant is built from orbitals that solve the
KS-equations for a suitably chosen (multiplicative)
potential V̂extðr; sÞ so that the KS-expression (36) for
the total energy attains a minimum. Because of this
latter feature the resulting potential VextðrÞ þ V̂extðr; sÞ is
called ‘‘optimized effective potential’’ (OEP). A power-
ful variant of the OEP-method which crucially alleviates
its application to solids and additionally accounts for
correlation effects, is due to Görling [52].
In the original ‘‘exchange-only’’ (xo)-approximation

/Ve2eS can be cast as

/Ve2eS ¼ 1
2

Z Z
r0ðr0Þr0ðrÞ
jr0 � rj d3r0 d3r

�1
2

X
s0;s

Z Z
*rðs

0sÞ
20 ðr0; rÞ
jr0 � rj d3r0 d3r

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼E

ðxoÞ
xc

;

where

*rðs
0sÞ

20 ðr0; rÞ ¼ ds0s
XNs

i¼1

XNs

j¼1
c�

jsðr0Þcisðr0Þc�
isðrÞcjsðrÞ:

ð57Þ
ObviouslyZ
*rðs

0sÞ
20 ðr0; rÞ d3r0 ¼

XNs

i¼1

XNs

j¼1

Z
c�

jsðr0Þcisðr0Þ d3r0
� �

� c�
isðrÞcjsðrÞ ¼ r0sðrÞ

and hence %excðr; sÞ in Eqs. (37) and (38) can be given
the form

%excðr; sÞ ¼ �1
2

X
s0

Z
r0s0 ðr0Þ %f

ðxoÞ
s0s ðr0; rÞ

jr0 � rj d3r0;

where

%f
ðxoÞ
s0s ðr0; rÞ ¼ *rðs

0sÞ
20 ðr0; rÞ

r0s0 ðr0Þ r0sðrÞ
ð58Þ

has the fundamental property %f
ðxoÞ
s0s ðr0; rÞ ¼ %f

ðxoÞ
ss0 ðr; r0Þ

and furthermore

%f
ðxoÞ
s0s ðr0; rÞ ¼ 1 for all r0 ¼ r and s0 ¼ s;

0 for all r0; r and s0as

�
andZ

r0s0 ðr0Þf
ðxoÞ
s0s ðr0; rÞ d3r0 ¼ ds0s 8r

which guarantees the absence of self-interaction as
explained earlier. An LSDA-type inclusion of electron
correlation which draws on the sum rule (22) reflecting a
weak structure in the pair-density, does not seriously
affect the accuracy one has gained in exactly satisfying
the sum rule (21). As soon as one departs from the latter,
the approach becomes inevitably inconsistent although
this might not directly impair the numerical results in
the calculation of integral properties.
From this point of view it is puzzling that a certain

class of expressions for exchange and correlation that
have more recently been put forward as improvements
do not comply with the sum rule (21). Some authors (see
e.g., [53]) modify *rðs

0sÞ
20 ðr0; rÞ by an exponential ‘‘screen-

ing factor’’ which somehow amounts to ‘‘screening the
Pauli principle’’. Clearly, the associate correlation factor
(58) cannot satisfy the sum rule (21) any more and will
therefore give rise to a self-interaction contribution in
the total energy. Another popular approach (see e.g.,
[54]) consists in constructing hybrid- (‘‘half and half’’-)
forms of E

ðxoÞ
xc ; GGA-and LSDA-expressions. As E

ðxoÞ
xc is

weighted by some factor different from one, this
procedure also leads to a violation of the important
sum rule (21).
4. Ferromagnetic order

The correct prediction of ferro- and antiferromagnetic
spin-order in solids represents one of the great successes
of DFT. Since the magnetization mðrÞ derives directly
from the wavefunction C0; as described by Eqs. (3) and
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(4), a density functional theory of spin-order is not tied
to model Hamiltonians like the Heisenberg Hamilto-
nian, for example. It is exactly along the lines of Slater’s
concept of band magnetism that he had pursued from
the early days of quantum mechanics. The first DFT-
calculations on ferromagnetic 3d-metals are due to
Gunnarsson [55], Andersen et al. [56] and Janak [57].
The state-of-the-art has recently been reviewed by
Kübler [58], see also [59].
The DFT-scheme offers an immediate understanding

of the driving mechanism that causes spin-order.
If one starts from a spin-symmetric situation

r0mðrÞ ¼ r0kðrÞ

and increases r0mðrÞ by Dr0ðrÞ at the expense of r0kðrÞ;
so that one obtains

r00mðkÞðrÞ ¼ r0mðkÞðrÞ7Dr0ðrÞ; ð59Þ

the exchange-correlation energy %Exc drops because we
have according to Eqs. (46) and (47) (electron correla-
tion of unlike spin neglected):

%Exc ¼ �
X
s

Z
½rsðrÞ	

4=3 d3r ð60Þ

which is non-linear in the changes r0mðkÞðrÞ-r00mðkÞðrÞ:
This is illustrated in Fig. 4 where we have plotted %ExcðgÞ
with g being defined through r00mðkÞðrÞ ¼ gr0mðkÞðrÞ ¼
ð17DÞr0mðkÞðrÞ: Obviously, one gains exchange-energy
by introducing a spin-asymmetry. However, the total
charge density remains unaffected because

P
s r

0
0sðrÞ ¼P

s r0sðrÞ: Hence, as one recognizes on inspection of the
E
xc

E
pa

ra
xc

gain:
+0.28

0.26
loss:

γ

γ 4/3

0.5 1.0 1.5

0.5

1.0

1.5

∆ ∆

Fig. 4. Effect of spin-asymmetry.
total energy (Eq. (36)) the change dE0 ¼ d/T̂S0 þ d %Exc

is negative if the gain d %Exc outweighs the increase of

/T̂S0: This is the situation when spin-order builds up,
regardless whether ferro- or anti-ferromagnetic order
occurs. In the following we shall limit ourselves to
ferromagnetic order in the 3d-elemental metals. The
particularly interesting case of anti-ferromagnetic
Cr-metal has been discussed from the standpoint of
the current article by Fritsche and Weimert [59].
Interestingly, the criterion for the onset of ferromag-

netic order can be brought into an entirely different (but
equivalent) form that was first discussed by Stoner [60].
The essential idea is sketched in Fig. 5 where the density
of states (DOS) (typical of a transition metal) has been
plotted for the spin-up and spin-down subsystems in a
self-explaining fashion. Fermi energies are denoted by
e0FmðkÞ for the spin-symmetric case (left panel) or by
eFmðkÞ otherwise. The density of states (DOS) is denoted
by DðemðkÞÞ: If one transfers DN electrons from the spin-
down system to empty states of the spin-up system
(indicated by the curved arrow), the Fermi energy would
rise by DeFm ¼ DN=Dðe0FmÞ if the potential V̂

m
extðrÞ ¼

VHðrÞ þ Vm
xcðrÞ would not be affected by this transfer.

(Correspondingly e0Fk would drop by �DN=Dðe0FmÞ:) In
actual fact, V

mðkÞ
xc ðrÞ responds to the change of r0mðkÞðrÞ

as it equals �4=3½r0mðkÞðrÞ	
1=3 if one neglects the far

smaller effect of electron correlation for unlike spin.
Thus, the potential and the DOS for spin-up states shifts
down by an amount

Dem ¼ DNI ;

where I stands for the so-called Stoner parameter
denoting the response of Vm

xcðrÞ per transferred electron.
If

jDemj4jDeFmj ¼
DN

Dðe0FmÞ

which has been assumed for the right panel of Fig. 5,
then

I4
1

Dðe0FmÞ
or equivalently IDðe0FmÞ41; ð61Þ

and the Fermi energy of the spin-up system is
pushed below that of the spin-down system. This
effects a further transfer from ‘‘spin-down’’ to ‘‘spin-
up’’ indicating the build-up of ferromagnetic order.
Clearly, as this process continues the shifts will
eventually reverse after transfer of a certain number of
electrons, and the Fermi levels on either side start
moving toward each other until they have reached
identical positions on the energy scale. This is the
situation shown in Figs. 6 and 7. Eq. (61) is referred to
as ‘‘Stoner criterion for the formation of ferromagnetic
order’’. (Stoner’s line of derivation is somewhat
different.)
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Fig. 5. Illustrating the Stoner criterion.
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Fig. 6. DOS of the ferromagnetic elemental metals.
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The Stoner parameter can be given a universal form:

I ¼ �
Z
O
DVm

xcðrÞj #c
symm
Fm ðrÞj2 d3r; ð62Þ
where #csymmFm ðrÞ denotes a KS-state at the Fermi level of
the spin-symmetric system, averaged over the associated
Fermi surface and normalized to unity with respect to
the volume O of the lattice cell. The quantity DVm

xcðrÞ is
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defined:
DVm
xcðrÞ ¼

Vm
xcðrmðrÞ þ e j #csymmFm ðrÞj2; rkðrÞ � e j #csymmFk ðrÞj2Þ � Vm

xcðrmðrÞ; rkðrÞÞ
e

;

where e51 and rmðkÞðrÞ refers to the densities of the
spin-symmetric system. To keep Fig. 5 as simple as
possible, we have ignored the fact that the lower s-type
portion of the DOS remains practically unaffected by
the response of V

mðkÞ
xc ðrÞ: In the derivation of Eq. (62)

one is only dealing with states and the DOS close to the
Fermi level to which the above considerations apply
without reservation.
Fig. 6 shows the DOS of ferromagnetic Fe, Co and Ni

which we have obtained from self-consistent FLAPW-
calculations, alternatively based on the exchange-corre-
lation (PW)-potential of Perdew and Wang [19] and on
our much simpler (EF)-potential [36].
The curves are drawn on top of each other. It should

be noted, however, that our ‘‘spin-up’’ DOS for Co and
Ni has been rigidly shifted to higher energies by
0:065 eV: Apart from the latter, the only visible
differences are portions of the DOS where the curve
seems to thicken.
Calculations on fcc- and hcp-Pd metal yield similar

results shown in Fig. 7. As Pd metal might be expected
to be very similar to Ni metal due to the electronic
configuration of the free Pd-atom, it is experimentally
well established that fcc-Pd metal is not spin-ordered at
its equilibrium lattice constant. However, it becomes
ferromagnetic, even when spin–orbit coupling is
included, if one expands the lattice by about 10%
(see [61]). By contrast, hcp-Pd metal is ferromagnetic
at its equilibrium lattice constant, but it can only be
manufactured in this non-equilibrium modification by
vacuum deposition on a (100)-substrate of Nb (see [62]).
Our calculations confirm the experimental observations,
and again, the differences in the analytical structure of
the two potentials do not lead to differences in the DOS
that would be on the scale of interest.
Interestingly, the gradient corrected exchange-corre-

lation potential by Perdew and Wang [18], yields
ferromagnetic order also for fcc-Pd metal. This indicates
again that an electron-gas-based inclusion of density
gradients cannot ensure improvement.
In addition to the DOS we have also checked the

Stoner criterion (61) by using alternatively the EF- and
the PW-potential for the 3d- and 4d-elemental metals.
The result is shown in Fig. 8 which refers to the EF-
potential. The PW-potential yields almost identical
results.
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Table 1

Magnetic moments per atom in Bohr magnetons

Sc Ti V Fe Co Ni Pd (fcc) Pd (hcp)

EF 0.00 0.0 0.0 2.18 1.55 0.58 0.00 0.35

PW 0.00 0.0 0.0 2.19 1.57 0.59 0.00 0.34

GGA-I 0.00 0.0 0.0 2.20 1.60 0.61 0.06 0.37

Xaða ¼ 2=3Þ 0.64 0.0 0.0 2.42 1.66 0.66 0.28 0.40

L. Fritsche, J. Koller / Journal of Solid State Chemistry 176 (2003) 652–670 667
Obviously, the Stoner criterion predicts very reliably
the occurrence of ferromagnetic order from the proper-
ties of the spin-symmetric systems.
The strongly structured dependence of I DðeFÞ on the

atomic number merely reflects the strong changes of the
DOS at the Fermi level. This is demonstrated in Fig. 9.
The dependence on the atomic number of I itself is very
weak as becomes apparent from Fig. 10.
Not surprisingly, the FLAPW-calculations: EF- vs.

PW-potential yield very little differences in the magnetic
moments which we have listed in Table 1.
As stated above, our EF-potential reduces to the Xa-

potential with a ¼ 2=3 if we disregard the electron
correlation of unlike spin. As a consequence, the
exchange-effect becomes overemphasized which is re-
flected in magnetic moments that are too large or even
non-vanishing where it should be zero. Nevertheless,
considering the exceedingly simple form of this poten-
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tial, its performance is impressive. This becomes even
more conspicuous with the elemental 3d-metals which
are not spin-ordered. The DOS of these metals is shown
in Fig. 11. Here we compare our EF-results against
those obtained by using alternatively the PW-potential
and the more advanced GGA-I-potential of Perdew and
Wang [18]. Again, we have drawn the respective curves
on top of each other. As follows from inspection of our
expression (49) for Vxcðr; sÞ; it reduces automatically to
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this simple Xa-form in the case of spin-symmetric
systems, and one would obtain an effective a-value of
the form a ¼ ax þ ac ¼ 0:71:
It is obvious from Fig. 11 that the DOS show

practically perfect agreement. We have extended our
calculations to the insulators (semi-conductors) C, Si,
Ge and GaAs where our potential V

mðkÞ
xc ðrÞ again

reduces to the simple Xa potential with a attaining the
value 0.71. Still, the resulting DOS agrees perfectly with
those obtained from the PW- or GGA-I-potential. In
Fig. 12 we have confined ourselves to displaying the
results only for Si, Ge and GaAs. Again the plots for the
DOS from two different potentials are drawn on top of
each other.
The results for C are in no ways different as regards

the principal features. The primary objective of devising
GGA-expressions for Exc and Vxc is to improve on the
binding energies of molecules. Hence, cohesive energies
of the insulators/semi-conductors should also be a good
testing ground for the performance of these expressions
of which we have only tested GGA-I. The results for the
above insulators/semi-conductors are listed in Table 2.
Obviously, the GGA-I-expression reduces visibly the

overbinding effect compared to the PW-values, but there
is still a considerable discrepancy with the experimental
cohesive energies. Again, the GGA-I-results and our
EF-values are almost identical.
5. Summary and conclusions

We have calculated electronic structure data for the
3d- and 4d-transition metals and some insulators/semi-
conductors (for the latter also cohesive energies) by
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Table 2

Cohesive energies in eV

C Si Ge GaAs

EF 9.3 5.3 4.3 3.8

GGA-I 9.1 5.3 4.2 3.9

PW 10.1 5.9 4.9 4.5

Expt. 7.4 4.6 3.8 3.3
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using a local spin-dependent exchange-correlation
potential that we derive by solely exploiting sum rules
for the pair-correlation factors. Our data prove to be
identical, on the scale of interest, with those obtained
from currently used potentials. Binding energies come
out closer to those obtained from GGA-expressions.
Essential elements of the conventional approach have
constantly been refined over the years and rest on the
concept of the weakly inhomogeneous electron gas. We
advance the opinion that this concept lacks a cogent
justification from first principles. It appears that a
systematic improvement in the description of exchange-
correlation can only be achieved by exploiting more
detailed information from the pair-density which will
prove—in practice—not to be expressible by functionals
of the one-particle density and their derivatives.
Certain spin-polarized systems seem to be borderline

cases of DFT in that the existence of spin-density
conserving potentials V̂extðr; sÞ have so far escaped a
mathematical proof. Failures of DFT in explaining the
electronic structure of certain transition metal oxides,
notably parent compounds of high-Tc superconductors,
are likely to be connected to this particular problem. It
has been shown in a recent paper by Fritsche et al. [63]



ARTICLE IN PRESS
L. Fritsche, J. Koller / Journal of Solid State Chemistry 176 (2003) 652–670670
that these apparent failures of DFT can be cured if one
allows for a difference between the true spin-densities
and those which can at best be simulated by a non-
interacting spin-polarized system. The derivation of our
expressions for Exc; excðr; sÞ and Vxcðr; sÞ is not affected
by a possible departure of the non-interacting spin-
densities from the interacting ones. This follows from
the fact that these expressions are obtained from the
sum rules which contain the true densities.
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[15] J. Sticht, K.H. Höck, J. Kübler, J. Phys.: Condens. Matter

1 (1989) 8155.

[16] L.M. Sandratskii, Adv. Phys. 47 (1998) 91.

[17] J. Harris, Phys. Rev. A 29 (1984) 1648.

[18] J.P. Perdew, Y. Wang, Phys. Rev. B 33 (1986) 8800.

[19] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.

[20] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R.

Pederson, D.J. Singh, C. Foilhais, Phys. Rev. B 46 (1992) 6671

and references therein.

[21] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996)

3865.

[22] P. Blaha, K. Schwarz, P. Dufek, R. Augustyn, WIEN95,

Technical University of Vienna 1995. (Improved and updated

Unix version of the original copyrighted WIEN-code, which was

published by P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, in

Comput. Phys. Commun. 59 (1990) 399.)

[23] H. Gollisch, L. Fritsche, Phys. Status Solidi B 86 (1978) 145.

[24] D.D. Koelling, P.N. Harmon, J. Phys. C 10 (1977) 3107.

[25] R. McWeeny, Rev. Mod. Phys. 32 (1960) 335.

[26] A.K. Rajagopal, J.C. Kimball, M. Banerjee, Phys. Rev. B 18

(1978) 2339.

[27] J.A. Alonso, L.A. Girifalco, Phys. Rev. B 17 (1978) 3735.
[28] O. Gunnarsson, M. Jonson, B.I. Lundqvist, Phys. Rev. B 20

(1979) 3136.

[29] O. Gunnarsson, R.O. Jones, Phys. Scr. 1 (1980) 394.

[30] J. Keller, J.L. Gásquez, Phys. Rev. A 20 (1979) 1289.

[31] M.S. Gopinathan, M.A. Whitehead, M.A. Bogdanović, Phys.
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[62] E. Hüger, Europhys. Lett. 63 (2003) 90.
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